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The inhomogeneous Toda lattice: its hierarchy and 
Darboux-Backlund transformations 

D Levi and 0 Ragnisco 
INFN, Senione di Roma and Dipaninento di Fisica, UniversitA di Roma ‘La Sapienza’, 
Piarrale A Mora 2, 00185 Roma, Italy 

iieceived 30 October 1990, in hnai Form 20 December i990 

Abstract. In this paper we show how one can construct hierarchies of nonlinear differential 
difference equations with n-dependent coefficients. Among these equations we present 
explicitly a set of inhomogeneous Toda lattice equations which are associated with a 
discrete Schrsdinger spectral problem whose potentials diverge asymptotically. 

Then we derive a new Darbaux transformation which allows us to get hounded 
solutions for the equations presented hefore and apply it in a specially simple case when 
the solution turns out to be expressed in terms a i  Hermite polynomials. 

1. Introduction 

There is an increasing number of problems in the natural sciences which are described 
by differential difference equations. They occur naturally in all those physical systems 
which are themselves discrete, like lattice systems in condensed matter, statistical 
mechanics and molecular physics. Moreover, differential equations for continuous 
systems are often reduced to difference or differential difference ones, by discretizing 
the underlying spacetime for reasons of technical convenience, i.e. in lattice gauge 
theories. 

In the field of nonlinear differential difference equations a prototype example is 
given by the Toda lattice equation which describe the behaviour of a one-dimensional 
lattice consisting of N particles of unit mass interacting with their nearest neighbours 
through the potential 

+ ( I )  =e-‘+ r. 

The theory of nonlinear evolution equations on the lattice started from the pioneering 
work by Toda [l]  in 1967 and developed in a parallel way to that of nonlinear partial 
differential equations; however, discrete mathematics is less developed than its 
infinitesimal counterpart and thus fewer results have been obtained. 

The Toda lattice equation belongs to the hierarchy of equations associated with 
the discrete Schrodinger spectral problem 

Q(n-l,t;A)+B(n,f)Jr(n,r;A)+A(n,r)Jr(n+l,r; A ) = A J l ( n ,  1 ; A ) .  (1.1) 

In formula (L l ) ,  A(n, t) and B(n, I )  are two real functions ofthe independent variables 
(n ,  I ) ,  where n EZ and I ER, A is a complex spectral parameter and @(n, I ;  A), the 

0305-4470/91/08l729+ 11$03.50 0 1991 IOP Publishing Ltd 1729 



1730 

wavefunction, depends on n and A and parametrically on f. The classical theory of 
the Toda equation assumes that 
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lim A(n , t ) - l=  lim B ( n , f ) = O .  (1.2) Id-- 1"I-m 

In the case of isospectral deformations of the spectral problem (1.1) with the boundary 
conditions (1.2) we get the class of nonlinear differential difference equations 

where a(2, t) is an entire function with respect to its first argument and the operator 
2 is given by 

with S(n) such that 

P ( n  + 1) S ( n + l )  = S(n)- 
A ( n + l ) '  

(1.46) 

The simplest equation of the class is obtained by choosing a ( 2 ,  t)  constant: we get 

(I.5a) 

(1.56) 

where, with no restrictions, we have set a = 1. Making the substitution A(n, 1 )  = 

exp(x(n, f ) -x (n+ l ,  t)),x(n, f)beingarealfunction,wegetB(n, t )=x, , (n ,  [)andthus 

( 1.6) 

i.e. the Toda lattice equation. 
A first generalization of this result has been given by u s  a few years ago [2]; there 

we considered non-isospectral deformations of the spectral problem (1.1) keeping 
boundary conditions (1.2). In such a case A is no longer constant, but evolves in time 
according to a well-defined law, namely 

x l " - I ) - x ( " ) -  X ( " ) - x l " - l )  x,An) = e e 

A,,=(A2-4)S(A, L )  (1.7) 

where S is an entire function with respect to its first argument. The corresponding 
class of nonlinear differential difference equations reads 

(1.8) 
A ( n ) ( B ( n + l ) ( 2 n + 3 ) - B ( n ) ( 2 n  - 1)) 

')( B2( n )  -4+2( n + 1)A( n )  -2( n - 1)A( n - 1) 

The simplest equation in the above class is 

A.,(n) = A(n)[B(n)(l  -S(2n -1))- B(n + l ) ( l  -S(2n +3))1 

B,, (n)  = A(n - 1)(1-2S(n -l))-A(n)(I-ZS(n+ 1))+S(B2(n)-4) 

for a = 1, 6 constant, which corresponds, through the definition 

(1.9a) 

(1.96) 

A(n) =exp[(l -S(2n - l ) )x(n)-( l  - S ( Z n  +3) )x (n+ l ) l  
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to the inhomogeneous Toda lattice equation 

,y,,,(n)=(1-2S(n -1)) e x p ( l - S ( 2 n  -3))x(fl-l)  -(1 -S(2n+ l)),y(n) 

-[1-2S(n + 111 exp(l-S(2n - l)),y(n) -(1 - ~ ( 2 n + 3 ) ) ~ ( n  + 1) 

+ s ( x : ( n )  -4) (1.10) 

which has explicit n-dependent coefficients and corresponds to a velocity-dependent 
force. In both cases, (1.6) and ( l . l O ) ,  the solutions are obtained by solving the scattering 
transform for the spectral problem (1.1) with the boundary conditions (1.2). 

By allowing for more general boundary conditions than (1.2), a further extension 
can he carried out which gives rise to new classes of nonlinear differential difference 
equations with variable coefficients. Of course, only certain classes of boundary condi- 
tions are admissible and the solution of the spectral problem in this case becomes 
generally very involved. 

In the following, in section 2, we shall derive the admissible class of boundary 
conditions and in section 3 we provide, via the Darboux transformation, a tool to find 
out explicit solutions of the given nonlinear differential difference equations. 

2. Construction of n-dependent Toda lattices 

Let us start from ( l .S) ,  which we rewrite here adding two extra terms, obtained by 
taking into account that 

(2 . l a )  

(2.1 b) 
A(n)[B(n+ 1)(2n +3) -B(n)(2n - l)]  
B2(n)+2(n + 1)A(n)-2(n - l )A(n - 1) 

where the operator 2 is given by (1.4): 

( 2 . 2 a )  
A(n)(B(n+ 1)(2n +3)-B(n)(2n - 1)) 

B 2 ( n )  -4+2(n+  l )A(n)-2(n - l )A(n - 1) 

The time evolution of the spectral parameter is now 

A., =P(t)+y(f)h+(A2-4)6(A,  1 ) .  (2.26) 

In contrast to (l.S), in (2.2a) A(n, 1 )  and B ( n ,  1 )  do not satisfy the boundary conditions 
(1.2) and thus, taking into account (2.1), we are allowed to add to (1.7) P(t) and y(t)A 
and to (1.8) the terms p( t ) ( ? )  and y(f)(’;$/) [2]. As we assume the houndaryconditions 
(1.2) to be no longer valid we can introduce some reference potentials gl(n),  g, (n )  
such that 

A ( n , O = a ( n ,  O + & ( n )  (2.3a) 

B(n, t )=b(n,r)+g,(n)  (2.36) 

where a ( n ) ,  b ( n )  now satisfy conditions (1.2). The choice (2.3) is not compulsory: at 
the end of this section we shall show through an example how one can introduce other 



1732 

reference potentials. Our aim is to define g , ( n )  and g 2 ( n )  in such a way that we are 
still able to construct a hierarchy of nonlinear differential difference equations out of 
it. Such a requirement restricts the number of admissible choices for g , ( n )  and g z ( n ) .  
Taking into account the fact that ( a ( n ) ,  b ( n ) )  must satisfy the boundary conditions 
(1.2) and (g , (n ) ,g , (n ) )  are t independent, we can write down (2.2a) as 

D Leui and 0 Ragnisco 

a ( n )  .o (a (n)+gi (n) ) (b(n) -b(n+l ) )+  
.o(a(n - 1 )  - a ( n ) ) +  yob(n)+ 

( b ( n )  ) ., =f(3A( 

) (2.4) 

where m u ,  Po, yo ,  So, are arbitrary constants, f(3, t) is an entire function of its first 
argument and ( g , ( n ) ,  g 2 ( n ) )  satisfy the equations 

ao(gAn)-g2(n  + 1))+2Yo+Sok2(n + 1) (2n+3) -g2(n ) (2n  - 1)) = 0 

& ( a ( n ) +  g i ( n ) ) ( b ( n  + 1)(2n  + 3 ) -  b ( n ) ( 2 n  - 1 ) )  
Sn(b2( n)+2b( n ) g 2 ( n )  -4+2( n + I ) a (  n )  -2( n - l ) a ( n  - 1 ) )  

(2.5a) 

aok ,  ( n  - 1 ) - g ,  ( n  )) + P o  + YogA n 1 + So(g:( n )  + 2( n + 1 ) g ,  ( n )  

- 2 ( n  - l ) g , ( n -  1 ) )  = o  (2.56) 

for g , ( n ) #  -1. If g , =  -1 then also g , ( n )  is constant and the solution is trivial. By 
comparing (2.2) and (2.4), we deduce that a ( A ,  I ) = a , f ( A ,  t )  while P(t), y ( t )  and 
S(A, t )  are uniquely defined by the following identity: 

f ( A ,  t ) [ P o +  Aye+ (A2-4)Sol = P ( t )    AY(^) + (A2-4)8(A,  11, 

Equations (2.5), being first-order linear difference equations, can be easily solved, and 
we get 

1 

g d n ) =  [S,(2n +1)-ao][s , (2n  - l ) -aOl  

(2.6a) 

1 
g l ( n ) =  (2n8,-ao)[2(n+ l ) S o -  an] 

- ( n  - k )  Po- [ & ( n  + k ) +  6"- a,lc2 ( 4 3  

where 

and k an arbitrary integer number. 
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Let us now analyse some simple choices of (ao, Po,  yo,  S o ,  g , ( k ) ,  g , ( k ) ,  k )  which 

(a) 

gives interesting reference potentials: 

yo= So = k =g,(O) = g 2 ( 0 )  = 0 

g d n )  = n 

g , ( n )  =an2 g l (n )  = n 

a0 = Po 
(2.7) 

g,(n) = 0 

6. = k =g,(O) = g2(0) = 0 a0 = 2% a. = -4P0 
(2.8) 

(b) 

(C) an= Po = yo= k = 0 92(0) = - 1  g m  = - f  

In correspondence with each one of these reference potentials we can construct a 
hierarchy of nonlinear differential difference equations given by (2.4).  As an example, 
we shall write down the simplest ones, i.e. the Toda-like equations. 

In case (a) we get 

a. , (n)=  a d a ( n ) f n ) ( b ( n )  - b ( n + l ) )  (2.10a) 

b , , ( n ) =  a o ( a ( n  - 1) - a ( n ) ) .  (2.10b) 

Equation (2.10), defining a ( n ) = ( n + l ) e x ' " ' - x ( " t ' ' - n  and thus x , e ( n ) = n o b ( n ) ,  can 
be also written as 

( 2 . 1 1 )  *, ( n ) = a ; [ n  e x ( " - l ' - x ( " ' - ( n +  1) e x ( + x ( " + l l + l ] .  

Equation (2.i i)  is associated with the spectrai probiem 

$ ( n - l ,  t ;  A ) +  b(n, t ) $ ( n ,  1 ;  A ) + ( a ( n ,  t ) +  n ) $ ( n ,  f ;  A )  = A$(??, 1 ;  A) 

where A evolves according to the equation 

A (  t )  = a,! + A. (2.12) 

A, being an arbitrary complex parameter. 
In case (b) we get 

a , , ( n ) =  n o ( a ( n ) + f n 2 ) ( b ( n )  - b(n  + 1 ) )  

b, , (n)  = a , ( n ( n  - 1) -a (n ) )+&,b(n) .  

(2.13~1) 

(2.13b) 

Defining a ( n )  = ( i n 2 +  1 )  ex'"'-x'"+1'-$n2, in such a way that x . , ( n )  = a ,b (n) ,  
expressions (2.13) yield 

[a(n - 1 ) 2 + 1 ]  ex("-ll-x("'-(;n2+ 1 )  ex(+x("+l) 

(2 .14)  

The associated spectral problem reads 

$ ( n - 1 ,  C A ) + ( b ( n ) + n ) $ ( n ,  1 ; h ) + ( a ( n ) + ~ n 2 ) $ ( f l + l , 1 ; A ) = h $ ( n , f ; A )  ( 2 . 1 5 )  

with A ( l ) = i + ( A o - f )  ea@. 
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In case (c) we have 

n,,(n)=So 4 n ) -  ) [ b ( n + 1 ) ( 2 n + 3 ) - b ( n ) ( 2 n - l ) ]  ( 4(2n+1)2 

4+2(n + l ) a ( n )  -2(n - l ) a ( n  - 1) 

(2.15a) 

(2.156) 

which, defining 

ei2n+, )x in+l ) - i2n~l )x i" )+  1 
4(2?1+1)~ 

in such a way that x.,(n) = S,b(n), can be cast in the form 

The associated spectral problem reads 

b(n)+-)$(rt, 4n2-1 1 I ;  A ) + ( a ( n ) -  4(2n + 1)2 ) $ ( n + l . f ; A )  

= A$(n,  I ;  A )  (2.17) 

Let us replace definition (2.2) by a new definition of the relation between the 
with A (  I)  = 2 coth(2So( f - to)) ,  to being an arbitrary real constant. 

reference potentials and the old potential, namely 

A(n, f ) = a ( n ,  f )gi(n)  (2.1 Sa) 

B(n ,  t )=b(n ,  t ) + g 2 ( n )  (2.lSb) 

where, as before, n(n, 1) and b(n, 1) satisfy the boundary conditions (1.2). For the sake 
of simplicity, let us just derive the simplest equation of the class corresponding to this 
new choice. It reads 

a , [ a ( n ) ( b ( n )  - b ( n + l ) ) l  
a , [ ( a ( n  - 1) - 1 ) g l ( n - 1 ) - ( 4 n ) -  1)gdn)l  

+Gla(n)(b(n+ 1)(2n +3)-  b(n)(2n - 1)) 

(X=( 
+ y l b ( n ) + S , { b z ( n ) + 2 b ( n ) g , ( n ) + 2 ( n  + l ) ( a ( n )  - 1)gdfl) 

- 2 ( n  - l ) ( n ( n  - 1)- I)g,(n - l)]) . (2.19) 

The corresponding equations for g , ( n )  and g 2 ( n )  are exactly equal to those presented 
before (see formulae (2.4)), with a o = a l ,  p o = p , - 4 S , ,  y o = y , ,  S o = S , .  Thus, for 
example, in case (a) we get 

+ 11 Yi"-l)--xi"l-  exi")-x("+ll x , h )  = a X ( n  - 1 )  e 
with a ( n ,  t )  = ex(n,')-xin+','); the corresponding spectral problem reads 

$ ( n - l , l ; A ) + b ( n , t ) $ ( n , t ; A ) + a ( n ,  t ) n $ ( n ,  t ; A ) = A + ( n , I ; A )  

A ( f ) = a , f + A , .  
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This specific example is not exceptional; indeed, one can show, in general, that the 
nonlinear differential difference equations one gets starting from (2.19) are not essen- 
tially different from the previous ones. 

3. Darboux and Backlund transformations for the discrete Schrodinger 
rpedr.! pmh!em 

To get the Darboux and Backlund transformations for the spectral problem ( l . l ) ,  with 
the boundary conditions (2.3), we apply the standard dressing method as introduced, 
for discrete equations, by Bruschi et a1 [3]. For this purpose, it is appropriate to write 
down the spectral problem in matrix form: 

in terms of two independent solutions @l(n, f ;  A )  and $2(n,  1 ;  A )  of ( 1 . 1 )  with A(n, 1 )  
and B i n ,  t )  given by j2.3j. The representation ( 3 . i )  0ij i . i )  is such inat the correspona- 
ing Hilbert-Riemann problem has canonical normalization [4] and thus the 'adding 
one soliton' Darboux 9 ( n ,  I ;  A )  matrix takes the form 

where A , ,  p,  are two compiex functions, satisfying tne same difierentiai equation as 
A, corresponding to two fixed different initial conditions, 0 is the 2 x 2 identity matrix 
and P(n, I )  is a A-independent 2 x 2 projection matrix, which can be written as 

A... 

where 

@(n,  I ;  , . . .  . :3.l) and luo), Iuo) two arbitrary constant 
vectors. Taking-into account that the matrix wavefunction b(n, f ;  A ) ,  associated with 
the 'dressed' potential i ( n ,  t ) ,  is given by 

~ ( n , t ; A ) = ~ ( n , f ; A ) @ ( n , f ; A )  

and the corresponding Q matrix reads 

C [ ~ ( n , t ) ; A ] = 9 ( n - l , t ; A ) ~ [ X ( n , f ) , A 1 9 d - ' ( f l , t ; A )  
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by direct calculation we can state the following 'two-parameter' Darboux theorem: 

D Levi and 0 Ragnisco 

Given the discrete Schrodinger equation 

+ ( l + g , ( n ) ) e " ' " ' - x ' " + ' ' + ( n + l ,  ~ ; A ) = o  

we can construct a new potential 

(3.4) 

and a new wavefunction 

(3.6) 
$ ( n ;  A i ) + ( n + l ; A ) - $ ( n + l ;  Ai)$(n; A )  

' ( i ( n ;  A I ) $ ( n + l ; ~ i ) - $ ( n + l ;  A i ) + ( n ;  P I )  

such that (3.4) is satisfied by the dressed potential f (n ,  t )  and wavefunction $(n, 1; A ) .  
Thus, given a potential x(n,  1 )  and a wavefunction $(n, 1 ;  A )  solving (3.4) the 

Darboux transformation provides us with a new potential f( n, t)  and new wavefunction 
$(n, f ;  A ) ,  which again satisfy (3.4). 

From the two-parameter Darboux transformation (3.5). (3.6), one can get a one- 
parameter Darboux transformation by  letting A ,  + p,  = p. In such a case we have 

(3.8) 

Let us stress that the Darboux transformation (3.7), (3.8) depends only on one complex 
time-dependent parameter p, and it does not correspond anymore to a Darboux matrix 
of type (3.3). In fact in this limiting case the projection matrix becomes, in whole 
generality, a nilpotent matrix. Consequently, we refer to (3.7), (3.8) as the 'new Darboux 
transformation' [SI. 

The corresponding Bicklund transformation can be obtained by eliminating the 
wavefunction +(n, f ;  A )  between (3.7) and the corresponding equation for f . , (n) .  It 
reads 

+(n;  p ) + ( n + l ;  A ) - $ ( n + i ;  p ) $ ( n ;  A) 
' 

+,,(n; IL)+( f l+  1; F) - $,,(n+ 1 ;  p ) $ ( n ;  -1. PI 
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Equation (3.9) shows that the class of potentials x ( n ,  1 )  such that 

lim x (  n, t )  = c (3.10a) 
1H-m 

lim x, , (n ,  t ) = O  (3.10b) 
1"I-m 

where cis  an n-independent real quantity, is preserved by the new Darboux transforma- 
tion. This is not the case for the classical Darboux transformation. The corresponding 

0 20 40 60 80 100 0 20 LO 60 80 100 

I 1 

0 20 40 60 80 100 

- 0.2 

-0 .4 

-0.6 

0 20 40 60 80 100 

1 1 

0 20 40 60 80 100 

- I  
0 20 40 60 80 100 

FigureI. P l o t o f l h e f u n c t i o n ~ ( n , l )  aGl=O,t=O.S,  : = I ,  1 = 2 , 1 = 5 a n d l = I S f a r p ~ = O  
and uo= 1. 
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Backlund transformation (see [ 6 ] )  reads 

i , t ( n ) - x , , ( n )  = .,,[(I +gl(n -1)) ef(n-'J-x(n!- (3.11a) 

i , ? ( n )  - x , , ( n  + 1) = g,(g,(n + l ) -g , (n )+ex ' "+ ' ' - i ' "+ 'J -e~ ' "~ - f~~ !  ). (3.11b) 

In fact, (3.11) preserve the asymptotic behaviour (3.10) only for g, ,  g, n-independent, 
A particularly interesting case is the inhomogeneous Toda lattice given by (2.11), 

which corresponds to choosing g , (n )  = n and g,(n) = 0. In this case a solution of (3.4) 
is given by 

D Levi and 0 Ragnisco 

I n  ( )) ei'"!-X'"+l' d 

x ( n ) = O  1 (3.12) 

(3.13) 

It is worthwhile noticing that (3.13) is time dependent, through A, and solves the whole 
Lax pair associated with (2.11). The application of the new Darboux transformation 
provide us with a non-trivial solution to the inhomogeneous Toda lattice (2.11), given 

) n > O  
1 

by 

2 n  n R 2 ( n )  -p/Z'/'R(n)+f 
(3.14) 

n = O  
n<O 

where R ( n )  =[H,_,(~/2"')/H,(p/2"2)] and, according to (2 , l lb) ,  we have: 

II = . O f + I I "  (3.15) 

where p,, is an arbitrary real constant. 
In figure 1 we have plotted the function x ( n ,  t ) ,  given by (3.14), for different values 

of the time t in the special case po=O, a,,= 1. By analysing (3.14) one can see that 
the zeros of x ( n ,  t )  are just the n zeros of the Hermite polynomials Hn(t/2"') and 
they are symmetric with respect to t = 0. From figure 1 we observe that the 'position', 
say f,, of the largest zero of x(n, t ) .  i.e. the furthest from the origin, is a monotonically 
increasing function of n. Hence the larger t is, the wider is the fraction of particles 
which are excited. Eventually, in the limit t + CO, x( n, t)  diverges for any n (all the 
particles are excited). The opposite phenomenon occur as t goes to zero. 
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